
Smart Navi Watch 
 
   

API Tutorial  Page 1 / 4 

API Tutorial 

Overview 
There are two main usage scenarios for the SmartNaviWatch library. This section tries to outline those 

scenarios and give a brief overview of the architecture you will be working with. 

Using the provided Wear App: This is most useful when you try to quickly provide your own application 

with the features that SmartNaviWatch has. The communication stack in this instance looks like the 

following: 

SmartNaviWatch Wear Application <-> Bluetooth <-> SmartNaviWatch Mobile App <->  Your Application 

The only part you need to worry about is your own application. You install the Mobile App (comes with 

the Wear App) and implement the connection to it. Then you send messages with navigation instructions 

and the library will take care of displaying them to the user. 

Using only the messaging layer: Use this approach if you want to create your own shiny user interface for 

both mobile and watch applications. The communication stack will look like this: 

Your Wear Application <-> EndPoint <-> Bluetooth <-> EndPoint <-> Your Mobile Application 

In this scenario you take full control over both ends of the user experience. The API is only used to send 

and receive messages. 

Warning: Please note that events occur asynchronously, in another thread. Changing UI elements as a 

result of an event requires you to make sure that () is called in order to run your code in the proper thread. 

Setting up the development environment 
» Download the source code for SmartNaviWatch here 

» Include the source code or a reference to a compiled version into your project 

» If you want to use the premade Watch App, install the SmartNaviWatch APK on your phone 

Basic Messaging 
Before you can start to send or receive messages, you need to understand the basic concept of all 

important messaging components. 

NavigationMessage This is the main class for containing messages. Messages consist of a message type 

and a payload object. The payload object is required to be marked with the Serializable interface.  

When working with the default APK (sending messages via NavigationServiceConnector) you should use 

a HashTable<String, Object> as payload. The keys correspond to the MessageDataKeys enumeration.  



Smart Navi Watch 
 
   

API Tutorial  Page 2 / 4 

Custom keys will be ignored by the default APK, but can come in handy in other scenarios where you build 

both ends of the connection. See "Sending Data" for some examples of creating messages with useful 

content. 

Warning: This protocol does not ensure reliable messaging. If you need to make sure messages are sent 

and received you need to take care of this yourself by adding another layer on top. 

MessageEndPoint EndPoints are used to receive or send messages. If you are working with the 

SmartNaviWatch APK you don't need to create your own EndPoint since you can send messages via the 

service connector. 

The creation of a custom watch and mobile application based on our library requires you to use EndPoints 

on both sides of the connection. Also note that both your mobile application as well as your wear 

application need to be from the same APK (and therefore have the same application id and certificate) to 

get packages passed through. 

NavigationServiceConnector Working with the provided APK, you send and receive messages via this 

connector from within your mobile application. This is to ensure that the Bluetooth connection is accepted 

by the underlying messaging layer based on the application id. 

Sending messages from a mobile application  
» Create and store an instance of NavigationServiceConnector: 
private NavigationServiceConnector messageService; 

... 

private NavigationServiceConnector getServiceConnector() { 

    if (messageService == null) 

    { 

        messageService = new NavigationServiceConnector(appContext); 

    } 

    return messageService; 

} 

» Create a message: 
NavigationMessage msg = NavigationMessage.create(messageType, payload); 

» Send your message: 
getServiceConnector().sendMessage(msg); 

Receivingmessages in a mobile application 
» Create and store an instance of NavigationServiceConnector (see "Sending messages from a mobile 

application" 

» Subscribe to the provided events by implementing IMessageListener 



Smart Navi Watch 
 
   

API Tutorial  Page 3 / 4 

public class Example implements IMessageListener { 

... 

    private void initListener() { 

        getServiceConnector().addMessageListener(this); 

    } 

 ... 

    @Override 

    public void messageReceived(NavigationMessage message) { 

        // Your message handling here 

    } 

} 

Sending / receiving messages without the default APK 
» Create and store an instance of EndPoint (you can use the same EndPoint for sending and receiving) 
private MessageEndPoint endPoint; 

... 

endPoint = new MessageEndPoint(getApplicationContext()); 

... 

» Subscribe to the provided events 
public class Example implements IMessageListener { 

 ... 

    private void initListener() { 

        endPoint.addMessageListener(this); 

    } 

 ... 

    @Override 

    public void messageReceived(final NavigationMessage message) { 

        // Your message handling here 

    } 

} 

» Create a message 
NavigationMessage msg = NavigationMessage.create(messageType, payload); 

» Send your message 
endPoint.sendMessage(msg); 

  



Smart Navi Watch 
 
   

API Tutorial  Page 4 / 4 

Sending Data 
When sending data between your own applications, you are free to use any payload objects, as long as 

they implement the Serializable interface and can be serialized by the default Java serializer. The same 

goes for the message type, choose whatever fits your needs. Just make sure the type passed is a path like 

this "sample/path/for/reference". 

However, sending data to the provided Wear App requires you to use a more strict data format.  

The type of the message should be one of the constants defined in MessageTypes. The content of the 

messages is made of a HashTable<String, Object>. The following table shows which keys should be set and 

what their expected values are: 

Key Expected Value 

MessageDataKeys.TurnType String: 
"C"    -> straight on 

"TL"   -> turn left 

"TSLL" -> turn left slightly 

"TSHL" -> turn left hard 

"TR"   -> turn right 

"TSLR" -> turn right lightly 

"TSHR" -> turn right hard 

"KL"   -> turn left slightly 

"KR"   -> turn right slightly 

"TU"   -> U-turn 

"TRU"  -> U-turn 

"OFF"  -> off route warning 

"RNDB" -> Roundabout 

MessageDataKeys.RoutingDescription String: 
Description of what the user should do next. 

MessageDataKeys.RouteLeftTime Integer: 
Estimated time left for the user to reach the 
destination. 

MessageDataKeys.MapPolygonData MapPolygonCollection: 
Polygons to be rendered on the map background. 

MessageDataKeys.LocationName String: 
Name of the location the user is currently at. 

MessageDataKeys.LocationAccuracy Float: 
Accuracy of the location in meters. 

 

 


